搜尋書名、關鍵詞

第6章 章

第 6 章

\chapter{Monte Carlo Simulation of the Estimation}\label{cap3}

\begin{adjustwidth}{2.5cm}{1cm}

\small This Chapter explains .....

\end{adjustwidth}

\vspace{0.5cm}

In this section, four types of parametric estimation methods will be discussed. Moment estimation will be addressed first, followed by the method of Fisher minimum $\chi^2$ estimation with Equiprobable Cells. Lastly, the RP-based minimum $\chi^2$ estimation will be implemented.

\section{Assessment Criteria}

As shown in Table II-XV, in this study, we use RMSE as theparative standard for assessing estimation uracy. RMSE (Root Mean Square Error) is a statistical measure used to assess the uracy of parameter estimates in predictive models [21]. It quantifies the average discrepancy between predicted and observed values, crucial for evaluating the goodness-of-fit in regression analysis and time series forecasting [21]. RMSE helps researchers and analysts gauge the precision of parameter estimates, guiding model refinement and selection [3]. It serves as a fundamental tool in various fields, including economics, environmental science, and finance, where precise parameter estimation is essential for decision-making and policy formulation. RMSE ensures robust and reliable parameter estimation, facilitating more urate predictions and informed decisions [2].

The Root Mean Square Error (RMSE) is calculated using the following formula:

\begin{equation}

RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n}(y_i - \hat{y}_i)^2}

\end{equation}

where:\\

1. n is the number of observations.\\

2. $y_i$ is the actual value of the i-th observation.\\

3. $\hat{y}_i$ is the estimated value of the i-th observation.\\

The formulaputes the square root of the average squared differences between the actual and estimated values, providing a measure of the typical deviation of the estimated values from the actual values.

\section{Estimation of three parameters}

We first estimated the three parameters in the Pearson Type III distribution using the method of moment estimation and maximum likelihood estimation. Detailed descriptions follow.

\subsection{The method of moment estimation}

Firstly, review formulas (1) and (2), the raw moments ($m_k $) and central moments ($t_k$) of a probability distribution can be expressed using the probability density function (PDF) ($f(x)$) as follows:\\

1.Raw Moment ($m_k $):\\

\begin{equation}

m_k = \int_{-\infty}^{\infty} x^k f(x) \, dx=E(X^k)

\end{equation}

The raw moment represents the k-th power of the variable  x  weighted by the probability density function  f(x) over the entire range of possible values. It provides information about the distribution's location, spread, and shape.\\

2. Central Moment ($t_k$):\\

\begin{equation}

t_k = \int_{-\infty}^{\infty} (x - E(x))^k f(x) \, dx= E[(X-E(X))^k]

\end{equation}

The central moment is similar to the raw moment but is calculated with respect to the mean (E(X)) of the distribution. It measures the spread or dispersion of the distribution around its mean.

These integrals represent the area under the curve of the PDF weighted by the respective functions of  x . They are fundamental in statistical analysis for quantifying various characteristics of probability distributions, such as moments, variance, skewness, and kurtosis.\\

Here, we set\\

$\bar{x}$=$E(X)$, $s^2$=$t_2$=$E[(X-E(X))^2]$ and $t_3$=$E[(X-E(X))^3]$\\

then, recall equations (1.1), (1.3), (1.4), (1.5) ,(3.2) and (3.3), by equating sample moments to theoretical moments, we can get\\

\begin{equation}

E(X)= \int_{\mu}^{\infty} x f(x;\mu, \sigma) \, dx=\mu + \beta \cdot \sigma=\bar{x}

\end{equation}

\begin{equation}

Var(X)=\int_{\mu}^{\infty} (x - E(x))^2 f(x) \, dx=\sigma^2 \cdot \beta=s^2

\end{equation}

\begin{equation}

\gamma(X) = \frac{E[(X - E(X)^3]}{SD^3} = \frac{2}{\sqrt{\beta}} = \frac{t^3}{s^3}

\end{equation}\\

where, SD represents the standard deviation\\

ording to (3.4), (3.5) and (3.6), $\hat{\mu}$, $\hat{\sigma}$ and $\hat{\beta}$, the moment estimators for $\mu$, $\sigma$ and $\beta$, are solved to be\\

\begin{equation}

\hat{\mu}=\bar{x}-s\sqrt{\frac{4s^6}{t_3^2}}

\end{equation}

\begin{equation}

\hat{\sigma}=\frac{s}{\sqrt{\frac{4s^6}{t_3^2}}}

\end{equation}

\begin{equation}

\hat{\beta} = \frac{4s^6}{t_3^2}

\end{equation}\\

\subsection{The maximum likelihood estimation method}

ording to Equations (1.1) and (2.3), the likelihood function of the Pearson type III distribution is written as follows.

\begin{equation}

\begin{aligned}

& L(\theta)=\prod_{i=1}^n f\left(x_{i}; \mu, \sigma, \beta\right)\\

& = \prod_{i=1}^n \frac{1}{{\sigma^\beta}{\Gamma(\beta)}}(x-\mu)^{\beta-1} \cdot e^{-\frac{x-\mu}{\sigma}}\\

& = \sigma^{-n \beta} \cdot[\Gamma(\beta)]^{-n} \cdot \prod_{i=1}^n\left(x_i-\mu\right)^{\beta-1} \cdot e^{-\frac{1}{\sigma} \sum_{i=1}^n\left(x_i-\mu\right)}

\end{aligned}

\end{equation}\\

where, $\theta=(\mu, \sigma, \beta)$.\\

Then, taking natural log on (3.10), we attain that

\begin{equation}

\begin{aligned}

& l(\theta)=\log L(\theta)=-n \beta-n \log \Gamma(\beta)+(\beta-1) \sum_{i=1}^n \log \left(x_i-\mu\right)-\frac{1}{\sigma} \sum_{i=1}^n\left(x_i-\mu\right)

\end{aligned}

\end{equation}\\

By applying the condition mentioned in (2.5), we attain that the system of equations to be solved contains\\

\begin{equation}

\frac{\partial l(\theta)}{\partial \mu}=-(\beta-1) \sum_{i=1}^n \frac{1}{x_i-\mu}+\frac{n}{\sigma}=0

\end{equation}

\begin{equation}

\frac{\partial l(\theta)}{\partial \sigma}=-\frac{n \beta}{\sigma}+\frac{1}{\sigma^2} \sum_{i=1}^n\left(x_i-\mu\right)=0

\end{equation}

\begin{equation}

\frac{\partial l(\theta)}{\partial \beta}=-n \log \sigma-n \psi(\beta)+\sum_{i=1}^n \log \left(x_i-\mu\right)=0

\end{equation}

where, $\psi(\beta)=\frac{\partial \ln \Gamma(\beta)}{\partial \beta}$.\\

ording to (3.12), (3.13) and (3.14), we cannot get the algebraic solutions for the above three parameters. In this case, we can construct a simulation study to calculate the estimator $\hat{\mu}$, $\hat{\sigma}$ and $\hat{\beta}$. The details of the simulation procedures are discussed in the following content.

\subsection{Procedures of Estimations}

The Monte Carlo simulation process of estimation for the three parameters in the Pearson type III distribution can be divided into the following steps:

\noindent\textbf{Step 1} Determine the true values for $\mu$, $\sigma$ and $\beta$.\\

\textbf{Step 2} Randomly take n samples following the Pearson type III distribution with parameters $\mu$, $\sigma$ and $\beta$.\\

\textbf{Step 3} Calculate $\hat{\mu}$, $\hat{\sigma}$ and $\hat{\beta}$ by applying the formulas in (3.7), (3.8) and (3.9) for moment estimation, however, for MLE, we need an algorithm to solve equations (3.12), (3.13) and (3.14).\\

\textbf{Step 4} Repeat steps 2 and 3 for N times, all of the above processes are performed in R 4.3.1.\\

The following table includes the detailed specification for each step:

\begin{table}[h]

\centering

\begin{tabular}{|c|c|}

\hline

Sample sizes \(n\) & 50, 100, 500, and 1000 \\

\hline

Seven different assignments for \(\mu\), \(\sigma\), and \(\beta\) & (3,1,1), (3,1,2), (3,1,3), \\

& (3,2,1), (3,3,1), (2,1,1), and (1,1,1) \\

\hline

Iterations & \(N = 1000\) \\

\hline

\end{tabular}

\end{table}

\subsection{Estimation Results of Simulation}

Tables $3.1-3.7$ present the results of moment estimation, while Tables $3.8-3.14$ present the results of Maximum Likelihood Estimation. In next subsection, we conduct a detailedparative analysis of these results.\\

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=3, $\sigma$=1, $\beta$=1}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 2.6429 & 2.7982 & 2.9539 & 2.976 \\

$\hat{\sigma}$ & 0.8136 & 0.8876 & 0.9759 & 0.9885 \\

$\hat{\beta}$ & 2.3482 & 1.6643 & 1.1393 & 1.0722 \\

RMSE($\hat{\mu}$) & 0.524 & 0.3342 & 0.1411 & 0.1025 \\

RMSE($\hat{\sigma}$) & 0.4584 & 0.3783 & 0.2059 & 0.1498 \\

RMSE($\hat{\beta}$) & 2.5026 & 1.193 & 0.3803 & 0.256 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=3, $\sigma$=1, $\beta$=2}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 2.1958 & 2.5977 & 2.907 & 2.9524 \\

$\hat{\sigma}$ & 0.862 & 0.917 & 0.9809 & 0.9918 \\

$\hat{\beta}$ & 6.0924 & 3.3176 & 2.2813 & 2.1342 \\

RMSE($\hat{\mu}$) & 1.6038 & 0.764 & 0.3152 & 0.2157 \\

RMSE($\hat{\sigma}$) & 0.4727 & 0.3795 & 0.2099 & 0.1445 \\

RMSE($\hat{\beta}$) & 20.3582 & 2.7083 & 0.8195 & 0.5199 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=3, $\sigma$=1, $\beta$=3}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 1.1751 & 2.3175 & 2.853 & 2.9107 \\

$\hat{\sigma}$ & 0.8698 & 0.9073 & 0.9781 & 0.9855 \\

$\hat{\beta}$ & 49.9423 & 5.3878 & 3.4273 & 3.2425 \\

RMSE($\hat{\mu}$) & 9.5964 & 1.3937 & 0.4825 & 0.3379 \\

RMSE($\hat{\sigma}$) & 0.4831 & 0.3695 & 0.1977 & 0.1433 \\

RMSE($\hat{\beta}$) & 889.324 & 5.7321 & 1.2264 & 0.8147 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=3, $\sigma$=2, $\beta$=1}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 2.2727 & 2.6162 & 2.9056 & 2.9494  \\

$\hat{\sigma}$ & 1.6357 & 1.8062 & 1.9616 & 1.9775 \\

$\hat{\beta}$ & 2.4406 & 1.6247 & 1.1405 & 1.0732 \\

RMSE($\hat{\mu}$) & 1.1067 & 0.6524 & 0.2891 & 0.2104 \\

RMSE($\hat{\sigma}$) & 0.9879 & 0.7912 & 0.4399 & 0.3088 \\

RMSE($\hat{\beta}$) & 3.3107 & 1.1244 & 0.3810 & 0.2601 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=3, $\sigma$=3, $\beta$=1}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 1.9091 & 2.4243 & 2.8584 & 2.924 \\

$\hat{\sigma}$ & 2.4536 & 2.7092 & 2.9424 & 2.9662 \\

$\hat{\beta}$ & 2.4406 & 1.6247 & 1.1405 & 1.0732 \\

RMSE($\hat{\mu}$) & 1.6601 & 0.9786 & 0.4337 & 0.3156 \\

RMSE($\hat{\sigma}$) & 1.4818 & 1.1868 & 0.6599 & 0.4632 \\

RMSE($\hat{\beta}$) & 3.3107 & 1.1244 & 0.3810 & 0.2601 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=2, $\sigma$=1, $\beta$=1}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 1.6429 & 1.7982 & 1.9539 & 1.976 \\

$\hat{\sigma}$ & 0.8136 & 0.8876 & 0.9759 & 0.9885 \\

$\hat{\beta}$ & 2.3482 & 1.6643 & 1.1393 & 1.0722 \\

RMSE($\hat{\mu}$) & 0.524 & 0.3342 & 0.1411 & 0.1025 \\

RMSE($\hat{\sigma}$) & 0.4584 & 0.3783 & 0.2059 & 0.1498 \\

RMSE($\hat{\beta}$) & 2.5026 & 1.193 & 0.3803 & 0.256 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Moment Estimation and RMSE for $\mu$=1, $\sigma$=1, $\beta$=1}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 0.6429 & 0.7982 & 0.9539 & 0.976 \\

$\hat{\sigma}$ & 0.8136 & 0.8876 & 0.9759 & 0.9885 \\

$\hat{\beta}$ & 2.3482 & 1.6643 & 1.1393 & 1.0722 \\

RMSE($\hat{\mu}$) & 0.524 & 0.3342 & 0.1411 & 0.1025 \\

RMSE($\hat{\sigma}$) & 0.4584 & 0.3783 & 0.2059 & 0.1498 \\

RMSE($\hat{\beta}$) & 2.5026 & 1.193 & 0.3803 & 0.256 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=3, \sigma=1, \beta=1$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 2.9971 & 3.0004 & 3.0001 & 3.0000 \\

$\hat{\sigma}$ & 1.0018 & 1.0363 & 1.0504 & 1.0640 \\

$\hat{\beta}$ & 1.0889 & 1.0549 & 1.0600 & 1.0694 \\

RMSE($\hat{\mu}$) & 0.0192 & 0.0063 & 0.0010 & 0.0005 \\

RMSE($\hat{\sigma}$) & 0.1344 & 0.0855 & 0.0851 & 0.0933 \\

RMSE($\hat{\beta}$) & 0.1740 & 0.0894 & 0.0852 & 0.0936 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=3, \sigma=1, \beta=2$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 3.1030 & 3.0461 & 3.0008 & 2.9988 \\

$\hat{\sigma}$ & 1.0354 & 1.0108 & 1.0034 & 1.0022 \\

$\hat{\beta}$ & 1.8206 & 1.9197 & 1.9822 & 1.9888 \\

RMSE($\hat{\mu}$) & 0.1500 & 0.0868 & 0.0242 & 0.0145 \\

RMSE($\hat{\sigma}$) & 0.1342 & 0.0834 & 0.0468 & 0.0345 \\

RMSE($\hat{\beta}$) & 0.2594 & 0.1818 & 0.1066 & 0.0744 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=3, \sigma=1, \beta=3$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 3.4092 & 3.2893 & 3.1199 & 3.0734 \\

$\hat{\sigma}$ & 1.4339 & 1.3088 & 1.1104 & 1.0622 \\

$\hat{\beta}$ & 1.8390 & 2.1037 & 2.6070 & 2.7614 \\

RMSE($\hat{\mu}$) & 0.4589 & 0.3289 & 0.1454 & 0.0960 \\

RMSE($\hat{\sigma}$) & 0.4822 & 0.3451 & 0.1376 & 0.0875 \\

RMSE($\hat{\beta}$) & 1.1776 & 0.9268 & 0.4519 & 0.3024 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=3, \sigma=2, \beta=1$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 2.9945 & 2.9978 & 3.0006 & 3.0003 \\

$\hat{\sigma}$ & 1.8414 & 1.9692 & 2.0369 & 2.0413 \\

$\hat{\beta}$ & 1.1178 & 1.0602 & 1.0459 & 1.0465 \\

\text{RMSE}($\hat{\mu}$) & 0.034 & 0.0152 & 0.0022 & 0.001 \\

\text{RMSE}($\hat{\sigma}$) & 0.3739 & 0.2011 & 0.0768 & 0.0701 \\

\text{RMSE}($\hat{\beta}$) & 0.2121 & 0.1248 & 0.0651 & 0.0659 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=3, \sigma=3, \beta=1$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 3.0032 & 2.9939 & 3.0006 & 3.0007 \\

$\hat{\sigma}$ & 2.6142 & 2.8153 & 3.0089 & 3.0307 \\

$\hat{\beta}$ & 1.1252 & 1.0795 & 1.0382 & 1.0374 \\

\text{RMSE}($\hat{\mu}$) & 0.0552 & 0.0246 & 0.0078 & 0.0019 \\

\text{RMSE}($\hat{\sigma}$) & 0.6651 & 0.4537 & 0.1328 & 0.062 \\

\text{RMSE}($\hat{\beta}$) & 0.2025 & 0.1591 & 0.0668 & 0.0534 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=2, \sigma=1, \beta=1$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 1.9970 & 2.0002 & 2.0001 & 2.0000 \\

$\hat{\sigma}$ & 1.0015 & 1.0358 & 1.0505 & 1.0639 \\

$\hat{\beta}$ & 1.0893 & 1.0561 & 1.0600 & 1.0694 \\

RMSE($\hat{\mu}$) & 0.0194 & 0.0074 & 0.0010 & 0.0004 \\

RMSE($\hat{\sigma}$) & 0.1348 & 0.0869 & 0.0851 & 0.0932 \\

RMSE($\hat{\beta}$) & 0.1748 & 0.0947 & 0.0853 & 0.0935 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{MLE and RMSE for $\mu=1, \sigma=1, \beta=1$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 500 & 1000 \\

\hline

$\hat{\mu}$ & 0.9970 & 1.0003 & 1.0001 & 1.0000 \\

$\hat{\sigma}$ & 1.0007 & 1.0364 & 1.0504 & 1.0639 \\

$\hat{\beta}$ & 1.0892 & 1.0554 & 1.0600 & 1.0694 \\

RMSE($\hat{\mu}$) & 0.0193 & 0.0069 & 0.0010 & 0.0005 \\

RMSE($\hat{\sigma}$) & 0.1349 & 0.0856 & 0.0850 & 0.0931 \\

RMSE($\hat{\beta}$) & 0.1738 & 0.0913 & 0.0853 & 0.0935 \\

\hline

\end{tabular}

\end{table}

\subsection{parative Analysis}

The above data tables provide a detailed presentation of the results from multiple simulations, including estimates $\hat{\mu}$, $\hat{\sigma}$, and $\hat{\beta}$ under different sample sizes n, along with their corresponding RMSE values. The following is a summary and analysis of the results.

\subsubsection{Influence of Sample Size}

From the tables, it can be observed that as the sample size increases, the RMSE of each estimate decreases, indicating an improvement in the uracy of the estimates with increasing sample size. At the same time, the estimates of \(\hat{\mu}\), \(\hat{\sigma}\), and \(\hat{\beta}\) also exhibit a trend of gradual stabilization with increasing sample size.

\begin{figure}[ht!] %!t

\centering

\includegraphics[width=3.5in]{setting1.png}

\caption{The variation trend of each parameter estimators and RMSE with sample size of MOM and MLE in setting1: $\mu$ = 3, $\sigma$ = 1, and $\beta$ = 1}

\label{LP}

\end{figure}

\subsubsection{MOM vs MLE}

Additionally, it also can be observed that there is some difference between the two different methods for a given sample size and set conditions. Especially for small sample sizes (n=50, 100), moment estimates tend to be more unstable than maximum likelihood estimates. With the increase of the sample size, the stability of both the moment estimation and the maximum likelihood estimation is significantly improved, but the difference between them still exists. Figures 3.1 to 3.3 respectively illustrate the visual results of setting 1, setting 2, and setting 4. It can be observed from the figures that, across all samples, the RMSE values corresponding to MLE are smaller, indicating that MLE has better uracypared to MOM. \\

\begin{figure}[ht!] %!t

\centering

\includegraphics[width=3.5in]{setting2.png}

\caption{The variation trend of each parameter estimators and RMSE with sample size of MOM and MLE in setting2: $\mu$ = 3, $\sigma$ = 1, and $\beta$ = 2}

\label{LP}

\end{figure}

\begin{figure}[ht!] %!t

\centering

\includegraphics[width=3.5in]{setting4.png}

\caption{The variation trend of each parameter estimators and RMSE with sample size of MOM and MLE in setting4: $\mu$ = 3, $\sigma$ = 2, and $\beta$ = 1}

\label{LP}

\end{figure}

\section{Estimation of two parameters}

In this section, we will demonstrate the detailed process of the two parameter estimation. That is to say, we first assign a value to the shape parameter $\beta$, and then sequentially use the four methods introduced in the methodology to estimate the location parameter $\mu$ and the scale parameter $\sigma$.

\subsection{The method of moment estimation}

Here, we set $\beta=1$, then (1.1) can be written as

\begin{equation}

f(x ; \mu, \sigma)=\frac{1}{\sigma} e^{-\frac{x-\mu}{\sigma}} \quad, \quad x>\mu

\end{equation}

Under this case, (3.4) and (3.5) should be replaced with

\begin{equation}

E(X)=\int_\mu^{\infty} x \cdot \frac{1}{\sigma} e^{-\frac{x-\mu}{\sigma}} d x=\mu+\sigma=\bar{x}

\end{equation}

\begin{equation}

Var(X)=\sigma^2=s^2

\end{equation}

Then, recall (3.7) and (3.8), the moment estimates of $\mu$ and $\sigma$ are $\hat{\sigma}=s$ and $\hat{\mu}=\bar{x}-s$ respectively.

\subsection{The maximum likelihood estimation method}

In this case, since $f\left(x_i; \mu, \sigma\right)$ is a monotonically decreasing function of $\mu$, and $\mu \leq x_i$, so MLE of $\mu$ is

\begin{equation}

\hat{\mu}=min(x_i)

\end{equation}

Then, recall (3.10) and (3.11), we can get the likelihood function and log-likelihood function under this case:

\begin{equation}

L(x ; \mu, \sigma)=\frac{1}{\sigma^n} \cdot e^{-\frac{1}{\sigma} \sum_{i=1}^n\left(x_i-\mu\right)}

\end{equation}

\begin{equation}

l(x ; \mu, \sigma)=-n \ln (\sigma)-\frac{1}{\sigma} \sum_{i=1}^n\left(x_i-\mu\right)

\end{equation}

Similarly, (3.13) can be written as

\begin{equation}

\frac{\partial l}{\partial \sigma}=-\frac{n}{\sigma}+\frac{1}{\sigma^2} \sum_{i=1}^n\left(x_i-\mu\right)=0

\end{equation}

By (3.18) and (3.21), we can get the MLE of $\sigma$ is

\begin{equation}

\hat{\sigma}=\frac{\sum_{i=1}^n\left(x_i-\hat{\mu}\right)}{n}=\bar{x}-\hat{\mu}

\end{equation}

\subsection{Fisher Minimum $\chi^2$ Estimation with Equiprobable Cells}

The Fisher minimum chi-square estimation method is based on minimizing the Pearson-Fisher chi-square statistic

$$

\chi_n^2(\theta)=\sum_{i=1}^m \frac{\left(N_i-n p_i(\theta)\right)^2}{n p_i(\theta)} .

$$

With $\mu=0$ and $\sigma=1$, the PDF of Pearson type III distribution is given by

\begin{equation}

f(x ; 0, 1)=e^{-x} \quad, \quad x>0

\end{equation}

The CDF of this distribution is

\begin{equation}

F(x;0,1) = 1-e^{-x}

\end{equation}

Let $\Delta_1, \Delta_2, \ldots \Delta_m$ to be equiprobable points for the standard Gumbel distribution.

Then, the classification can be given by

$$

p_1(0,1)=\int_{-\infty}^{\Delta_1} \boldsymbol{f}(x ; 0,1) d x=p_2(0,1)=\int_{\Delta_1}^{\Delta_2} \boldsymbol{f}(x ; 0,1) d x=\cdots=\frac{1}{m}

$$

For Gumble distribution,

$$

p_i(0,1)=\left\{\begin{array}{lc}

\int_{-\infty}^{\Delta_1} f(x ; 0,1) d x=e^{-e^{-\Delta_1}}, & \text { for } i=1 \\

\int_{\Delta_{i-1}}^{\Delta_{i-1}} f(x ; 0,1) d x=e^{-e^{-\Delta_i}}-e^{-e^{-\Delta_{i-1}},}, & \text { for } 1

\int_1^{\infty} f(x ; 0,1) d x=-e^{-e^{-\Delta_m}}, & \text { for } i=m

\end{array}\right.

$$

Obtaining $\Delta_i$ by letting $p_i(0,1)=\frac{1}{m}$ and defining the cells:

$$

\begin{gathered}

J_1=\left(-\infty, \hat{\mu}+\hat{\sigma} \Delta_1\right), \ldots J_{m+1}=\left(\hat{\mu}+\hat{\sigma} \Delta_m,+\infty\right), \\

j=1, \ldots, m+1

\end{gathered}

$$

where the $\hat{\mu}$ and $\hat{\sigma}$ are the results of MLE for the given parameters. Let

$$

N_i=\operatorname{Card}\left\{X_j \in J_i: j=1, \ldots, n\right\}, i=1, \ldots, m+1

$$

Define the cells probabilities:

$$

p_i(\mu, \sigma)=\int_{J_i} f(x ; \mu, \sigma) d x, i=1, \ldots, m+1

$$

For gumble distribution,

Pearson-Fisher's minimum chi-square estimator satisfies

$$

\sum_{i=1}^m \frac{N_i}{p_i(\theta)} \cdot \frac{\partial p_i(\theta)}{\partial \theta_j}=0, j=1,2, \theta=(\mu, \sigma)

$$

\subsection{RP-based Minimum $\chi^2$ Estimation}

The cells in defining the chi-square equations for RP-minimum chi-square estimation are different from the Fisher Minimum chi-square estimation's. The cells in Fisher Minimum chi-sqaure estimation are defined by a certain amount of equiprobable points, whereas the cells in RP-minimum chisquare estimation are defined by the representative points (RPs).

Finding representative points is based on the idea to find discrete distribution to approximate continuous distribution. By introducing the loss function, the optimal RPs have the best representative performance to minimize the loss function.

Let $\left\{R_i^0: i=, \ldots, m\right\}$ be a set of RPs (representative points) obtained by existing algorithm from standard Gumbel function. Then a set of RPs from $f(x ; \mu, \sigma)$, which stands for Gumbel function with non-standard parameters, can be estimated by

\begin{equation}

R_i=\hat{\mu}+\hat{\sigma} R_i^0, i=1, \ldots, m

\end{equation}

where $\hat{\mu}$ and $\hat{\sigma}$ are MLEs of real parameters $\mu$ and $\sigma$, separately. Define the cells:

\begin{equation}

\begin{gathered}

I_1=\left(-\infty, \frac{R_1+R_2}{2}\right), \ldots, I_{m-1}=\left(\frac{R_{m-1}+R_m}{2},+\infty\right), \\

j=2, \ldots, m-1 .

\end{gathered}

\end{equation}

The RP minimum chi-square estimators are the solution to equation 2.6 .

The algorithm of RP-minimum chi-square estimation is similar to the Fisher-minimum chi-square estimation’s.

\subsection{Procedures of Estimations}

\subsubsection{ Moment and Maximum Likelihood Estimations}

The moment estimators, derived as previously described, are denoted by (2.8) and (2.9). As these results are algebraic solutions, constructing the procedures is straightforward, as outlined below:

\begin{enumerate}

\item \textbf{Step 1:} Determine the true values for $v$ ($v > 2$), $\mu$, and $\sigma$.

\item \textbf{Step 2:} Randomly select $n$ samples following the generalized Student's $t$-distribution with parameters $v$ ($v > 2$), $\mu$, and $\sigma$.

\item \textbf{Step 3:} Calculate $\hat{\mu}$ and $\hat{\sigma}$ using the formulas in equations (2.8) and (2.9), respectively.

\item \textbf{Step 4:} Repeat steps 2 and 3 for $N$ iterations, andpute the Root Mean Square Error (RMSE) using the formula in equation (2.24).

\end{enumerate}

The maximum likelihood estimators follow the formulas (2.17) and (2.18), derived as before. While $\hat{\mu}$ can be expressed algebraically, $\hat{\sigma}$ cannot. Therefore, the procedures differ slightly from those of moment estimation.

\begin{enumerate}

\item \textbf{Step 1:} Determine the true values for $v$ ($v > 2$), $\mu$, and $\sigma$.

\item \textbf{Step 2:} Randomly select $n$ samples following the generalized Student's $t$-distribution with parameters $v$ ($v > 2$), $\mu$, and $\sigma$.

\item \textbf{Step 3:} Calculate $\hat{\mu}$ using the formula in equation (2.17). Use the Newton-Raphson method to numerically solve equation (2.18) for $\hat{\sigma}$ (the "fsolve" built-in function in MATLAB could be applied).

\item \textbf{Step 4:} Repeat steps 2 and 3 for $N$ iterations, andpute the RMSE using the formula in equation (2.24).

\end{enumerate}

\subsubsection{ Fisher Minimum $\chi^2$ Estimations}

For the two minimum $\chi^2$ estimations, the procedures differ from the previous ones. Initially, we must determine the true values and the maximum likelihood estimators of the parameters, which is no different from steps 1 to 3 of the maximum likelihood estimation procedures. Next, it is crucial to generate $m$ cells of interest over the support of the generalized Student's $t$-distribution, i.e., all real numbers. Since the generalized Student's $t$-distribution is a location-scale family extended by the standard Student's $t$-distribution, we can first generate $m$ cells of interest with respect to the standard distribution, and then linearly transform them using the maximum likelihood estimators of the parameters. This transformation makes the transformed cells approximately the ideal cells of interest \textit{w.r.t} the generalised distribution. Following this, (2.23) should be determined and solved by MATLAB built-in function ”fsolve”. The parameters that are solved are called minimum $\chi^2$ estimators. By repeating the above steps for $N$ times, the RMSE should be calculated by applying (2.24). The detailed steps are listed as follows.

\begin{enumerate}

\item Step 1: Determine the true values for $v (v > 2)$, $\mu$, and $\sigma$.

\item Step 2: Generate $m$ cells with respect to the standard Student’s $t$ distribution, denoted by $J_i$, where $i = 1, \ldots, m$.

\item Step 3: Randomly take $n$ samples following the generalized Student’s $t$-distribution with parameters $v (v > 2)$, $\mu$, and $\sigma$.

\item Step 4: Calculate $\hat{\mu}$ by applying the formula in (2.17). Use Newton-Raphson method to solve equation (2.18) numerically for $\hat{\sigma}$ (The ”fsolve” built-in function in MATLAB could be applied).

\item Step 5: Transform all the ”$J_i$”s linearly by $\Delta_i = \hat{\mu} + \hat{\sigma} J_i$, which means that to transform the endpoints of ”$J_i$”s linearly except for infinite endpoints.

\item Step 6: Determine all of the elements specified in (2.23), and solve the equation numerically by applying the ”fsolve” built-in function in MATLAB.

\item Step 7: Repeat steps 3 to 6 for $N$ times, and calculate the RMSE by applying the formula in (2.24).

\end{enumerate}

In step 2, we have two ways of generating cells from the standard Student’s $t$-distribution with degree of freedom $v (v > 2)$. The first way is the Fisher’s classification, i.e., we let $p_1(\theta) = \ldots = p_m(\theta) = \frac{1}{m}$, where $p_i(\theta)$ is defined as what (2.20) has illustrated. The endpoints can be solved when the above equations are satisfied. Hence, the cell intervals are constructed. The second way is the RP classification. From [6], we can obtain the RPs of the standard Student’s $t$-distribution with degree

of freedom $v (v > 2)$, which are denoted as $R_1, \ldots, R_m$. The cell intervals,

$\Delta_1 = (-\infty, \frac{R_1 + R_2}{2})$, $\Delta_j = (\frac{R_{j-1} + R_j}{2}, \frac{R_j + R_{j+1}}{2})$, where $j = 2, \ldots, m - 1$, and

$\Delta_m = (\frac{R_{m-1} + R_m}{2}, \infty)$, are hence constructed.

\subsection{Estimation Results of Simulation}

The estimation results are listed in the following tables. In our simulation study, we set $n = 50, 100, 200, 400$, $m = 5, 10, 20$, $\beta = 1$, $\mu = 1$, $\sigma = 2$, and $N = 1000$. It is worth noticing that the true values of the parameters are selected without loss of generality. The aim of our simulation study is topare the estimation methods and choose the best ones. Hence, the true values of the parameters should be manipulated to be the same.\\

\begin{table}[!htbp]

\caption{Simulation Results of Moment Estimation}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 0.9080 & 0.9732 & 0.9904 & 0.9932 \\

$\hat{\sigma}$ & 1.9603 & 1.9893 & 1.9963 & 1.9970 \\

RMSE($\hat{\mu}$) & 0.2823 & 0.1561 & 0.0909 & 0.0755 \\

RMSE($\hat{\sigma}$) & 0.4373 & 0.2329 & 0.1302 & 0.1065 \\

\hline

\end{tabular}

\end{table}

\begin{table}[!htbp]

\caption{Simulation Results of MLE}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 1.1744 & 1.0946 & 1.0463 & 1.0201 \\

$\hat{\sigma}$ & 2.2571 & 2.1283 & 2.0585 & 2.0215 \\

RMSE($\hat{\mu}$) & 0.2324 & 0.1399 & 0.0845 & 0.0529 \\

RMSE($\hat{\sigma}$) & 0.3754 & 0.2350 & 0.1528 & 0.0931 \\

\hline

\end{tabular}

\end{table}

\begin{table}[htbp]

\caption{Simulation Results of Minimum $\chi^2$ Estimation with Equiprobable Cells for $m=5$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 1.0684 & 1.0493 & 1.0330 & 1.0299 \\

$\hat{\sigma}$ & 1.9415 & 1.9539 & 1.9628 & 1.9678 \\

\text{RMSE}($\hat{\mu}$) & 0.0850 & 0.0641 & 0.0427 & 0.0375 \\

\text{RMSE}($\hat{\sigma}$) & 0.1782 & 0.1281 & 0.0948 & 0.0817 \\

\hline

\end{tabular}

\end{table}

\begin{table}[htbp]

\caption{Simulation Results of Minimum $\chi^2$ Estimation with Equiprobable Cells for $m=10$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 1.0488 & 1.0303 & 1.0222 & 1.0189 \\

$\hat{\sigma}$ & 1.9623 & 1.9732 & 1.9799 & 1.9834 \\

\text{RMSE}($\hat{\mu}$) & 0.0598 & 0.0380 & 0.0278 & 0.0244 \\

\text{RMSE}($\hat{\sigma}$) & 0.1564 & 0.1165 & 0.0797 & 0.0707 \\

\hline

\end{tabular}

\end{table}

\begin{table}[htbp]

\caption{Simulation Results of Minimum $\chi^2$ Estimation with Equiprobable Cells for $m=20$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 1.0355 & 1.0224 & 1.0151 & 1.0127 \\

$\hat{\sigma}$ & 1.9832 & 1.9793 & 1.9947 & 1.9940 \\

\text{RMSE}($\hat{\mu}$) & 0.0444 & 0.0286 & 0.0193 & 0.0160 \\

\text{RMSE}($\hat{\sigma}$) & 0.1575 & 0.1091 & 0.0714 & 0.0672 \\

\hline

\end{tabular}

\end{table}

\begin{table}[htbp]

\caption{Simulation Results of RP-based Minimum $\chi^2$ Estimation for $m=5$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 0.9915 & 0.9922 & 0.9972 & 0.9924 \\

$\hat{\sigma}$ & 2.0220 & 2.0184 & 2.0048 & 2.0062 \\

\text{RMSE}($\hat{\mu}$) & 0.1826 & 0.1242 & 0.0880 & 0.0787 \\

\text{RMSE}($\hat{\sigma}$) & 0.2055 & 0.1434 & 0.1026 & 0.0860 \\

\hline

\end{tabular}

\end{table}

\begin{table}[htbp]

\caption{Simulation Results of RP-based Minimum $\chi^2$ Estimation for $m=10$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 0.9871 & 0.9939 & 0.9979 & 0.9965 \\

$\hat{\sigma}$ & 2.0659 & 2.0348 & 2.0217 & 2.0151 \\

\text{RMSE}($\hat{\mu}$) & 0.1033 & 0.0716 & 0.0498 & 0.0451 \\

\text{RMSE}($\hat{\sigma}$) & 0.1842 & 0.1237 & 0.0864 & 0.0790 \\

\hline

\end{tabular}

\end{table}

\begin{table}[htbp]

\caption{Simulation Results of RP-based Minimum $\chi^2$ Estimation for $m=20$}

\centering

\begin{tabular}{|c|c|c|c|c|}

\hline

$n$ & 50 & 100 & 200 & 400 \\

\hline

$\hat{\mu}$ & 0.9957 & 0.9974 & 0.9980 & 0.9990 \\

$\hat{\sigma}$ & 2.1124 & 2.0639 & 2.0421 & 2.0346 \\

\text{RMSE}($\hat{\mu}$) & 0.0607 & 0.0449 & 0.0314 & 0.0269 \\

\text{RMSE}($\hat{\sigma}$) & 0.2021 & 0.1287 & 0.0906 & 0.0757 \\

\hline

\end{tabular}

\end{table}

\newpage

\subsection{parative Analysis}

As we can see in Tables \ref{table:2.1} and \ref{table:2.2}, when the sample size is small, the uracies of the parametric estimation methods are low, since the RMSEs are nearly 0.3. We are not satisfied with these results, so our samples should be expanded, and the number of our cells should be increased. As the sample size increases, the uracies are getting higher than those when the sample size is small. As \( n = 400 \), the RMSEs are small enough for us to ept.

In addition, we can clearly see from the tables above that moment estimation method and RP-minimum \( \chi^2 \) estimation method are slightly better than the other two methods. In the next chapter, further applications regarding to the four kinds of estimation methods will be implemented. We can observe the differences of the estimation behaviors in a more explicit way as further simulation studies are constructed.

+A -A

同類推薦

  1. 天王殿夏天周婉秋

    天王殿夏天周婉秋

    六年浴血,王者歸來,憑我七尺之軀,可拳打地痞惡霸,可護嬌妻萌娃...

    免費言情 連載中 352.2萬字
  2. 凡人修仙傳

    凡人修仙傳

    一個普通山村小子,偶然下進入到當地江湖小門派,成了一名記名弟子。他以這樣身份,如何在門派中立足,如何以平庸的資質進入到修仙者的行列,從而笑傲三界之中!
    諸位道友,忘語新書《大夢主》,經在起點中文網上傳了,歡迎大家繼續支持哦!
    小說關鍵詞:凡人修仙傳無彈窗,凡人修仙傳,凡人修仙傳最新章節閱讀

    免費言情 已完結 766.7萬字
  3. 魔帝纏寵:廢材神醫大小姐

    魔帝纏寵:廢材神醫大小姐

    月千歡難以想象月雲柔居然是這麽的惡毒殘忍!
    絕望,心痛,恥辱,憤怒糾纏在心底。
    這讓月千歡……[

    免費言情 已完結 420.1萬字
  4. 帝少強寵:國民校霸是女生

    帝少強寵:國民校霸是女生

    “美人兒?你為什麽突然脫衣服!”
    “為了睡覺。”
    “為什麽摟着我!?”
    “為了睡覺。”
    等等,米亞一高校霸兼校草的堂堂簡少終于覺得哪裏不對。
    “美美美、美人兒……我我我、我其實是女的!”
    “沒關系。”美人兒邪魅一笑:“我是男的~!”
    楚楚可憐的美人兒搖身一變,竟是比她級別更高的扮豬吃虎的堂堂帝少!
    女扮男裝,男女通吃,撩妹級別滿分的簡少爺終于一日栽了跟頭,而且這個跟頭……可栽大了!

    免費言情 已完結 273.0萬字
  5. 校園修仙狂少

    校園修仙狂少

    姓名:丁毅。
    外號:丁搶搶。
    愛好:專治各種不服。
    “我是東寧丁毅,我喜歡以德服人,你千萬不要逼我,因為我狂起來,連我自己都害怕。”

    免費言情 已完結 590.5萬字
  6. 鬥羅大陸III龍王傳說

    鬥羅大陸III龍王傳說

    伴随着魂導科技的進步,鬥羅大陸上的人類征服了海洋,又發現了兩片大陸。魂獸也随着人類魂師的獵殺無度走向滅亡,沉睡無數年的魂獸之王在星鬥大森林最後的淨土蘇醒,它要帶領僅存的族人,向人類複仇!唐舞麟立志要成為一名強大的魂師,可當武魂覺醒時,蘇醒的,卻是……曠世之才,龍王之争,我們的龍王傳說,将由此開始。
    小說關鍵詞:鬥羅大陸III龍王傳說無彈窗,鬥羅大陸III龍王傳說,鬥羅大陸III龍王傳說最新章節閱讀

    免費言情 已完結 525.3萬字
  7. 步步生花:穿越之霹靂皇後

    步步生花:穿越之霹靂皇後

    師父居心叵測,讓他身敗名裂;師兄騙她感情,讓他死無全屍;
    小師妹給她設下生死陷阱,就讓她生不如死!彈藥師借屍還魂,辱她者,她必辱之,害她者,她必千萬回報!
    還有他,欲借她力、謀她身、奪她心,她偏要拆他臺、踹他小弟、戳他心肝脾肺腎!
    什麽,要姐做皇後?行,領着千軍萬馬過了霹靂火雷陣先!
    包子已死,天才重生。行走間,石榴裙下屍橫遍野!談笑中,舌燦蓮花怎敵得過步步血蓮!

    免費言情 已完結 138.5萬字
  8. 快穿:黑化BOSS,撩上瘾

    快穿:黑化BOSS,撩上瘾

    洛笙歌這輩子最對不起的,便是墨柒,她害死了他。
    為了救回墨柒,渡入輪回,收集碎片。
    只是,為什麽墨柒突然變成了各種詭異風?
    殘暴總裁、腹黑呆萌竹馬、冷漠影帝、惡魔撒旦、邪惡喪屍科學家、風流世子、毀容城主……
    總有渣男渣女想害他,不怕,我有BOSS在手,我家BOSS炸天了,帶我徒手奪光環。
    PS:這是一個從愧疚到感動到喜歡的故事,洛笙歌可賣萌...

    免費言情 已完結 412.6萬字
  9. 少帥你老婆又跑了

    少帥你老婆又跑了

    少帥說:“我家夫人是鄉下女子,不懂時髦,你們不要欺負她!”那些被少帥夫人搶盡了風頭的名媛貴婦們欲哭無淚:到底誰欺負誰啊?少帥又說:“我家夫人娴靜溫柔,什麽中醫、槍法,她都不會的!”那些被少帥夫人治好過的病患、被少帥夫人槍殺了的仇敵:少帥您是瞎了嗎?“我家夫人小意柔情,以丈夫為天,我說一她從來不敢說二的!”少帥跪在搓衣板上,一臉豪氣雲天的說。督軍府的衆副官:臉是個好東西,拜托少帥您要一下!小說關鍵詞:少帥你老婆又跑了無彈窗,少帥你老婆又跑了,少帥你老婆又跑了最新章節閱讀

    免費言情 已完結 675.2萬字
  10. 萌萌獸寵:小吃貨,生個崽

    萌萌獸寵:小吃貨,生個崽

    【正文完1v1甜寵】意外穿越獸世,被獸人強行圈養投喂生肉,吃貨李茶茶欲哭無淚!
    衣食住行沒保障,茶茶自己動手,豐衣足食!香味引得獸人們天天蹭飯,到了晚上還争着給她當抱枕——
    喂!當抱枕就當抱枕,不帶動手動腳的啊!
    幾年後,茶茶拎出窩裏的小崽子們,“你們幾個,過來陪我鬥地主!”
    鬥來鬥去,小小包哇的一聲,“阿爸,麻麻又欺負人!”
    某個當爹的不以為然,“乖,生你們出來,就是給麻麻欺負着玩兒的。”小說關鍵詞:萌萌獸寵:小吃貨,生個崽無彈窗,萌萌獸寵:小吃貨,生個崽,萌萌獸寵:小吃貨,生個崽最新章節閱讀

    免費言情 已完結 234.1萬字
  11. 醫毒雙絕:冥王的天才寵妃

    醫毒雙絕:冥王的天才寵妃

    拍賣盛宴上,擁有絕佳體質的少女被開出天價,人人哄搶。
    陡然間,金色牢籠中的少女睜開眼,寒芒四射,懦弱不再。
    她一朝穿越為神醫府人人欺淩的廢柴三小姐。
    經脈俱廢,不能修煉?怕什麽,她是絕世神醫,這點傷根本不放在眼裏。
    爹不疼,娘不愛,人人算計?哼,她有空間在手,靈寵無敵,小小納蘭府翻手可滅!
    容顏醜陋,沒人要?眨眼恢複傾世容顏
    且看她一路破除萬難,走上巅峰

    免費言情 已完結 435.9萬字
  12. 遮天

    遮天

    冰冷與黑暗并存的宇宙深處,九具龐大的龍屍拉着一口青銅古棺,亘古長存。
    這是太空探測器在枯寂的宇宙中捕捉到的一幅極其震撼的畫面。
    九龍拉棺,究竟是回到了上古,還是來到了星空的彼岸?
    一個浩大的仙俠世界,光怪陸離,神秘無盡。熱血似火山沸騰,激情若瀚海洶湧,欲望如深淵無止境……
    登天路,踏歌行,彈指遮天。

    免費言情 已完結 680.9萬字
  13. 傳奇大老板

    傳奇大老板

    新書《我有一個兜率宮》已發布,請大家多多支持!
    身患怪病的城中村包租公李單,門口來了三個奇怪的租客。
    “我叫汪岩,是孤兒,是重生者,重生前是億萬富翁!我會賺錢,我想租房。”
    “我叫江塵,是孤兒,是重生者,世界末日就要來了!我會種田,我想租房。”
    “我叫方宇,是孤兒,是重生者,地心世界就要入侵!我會修煉,我想租房。”
    李單:滾!
    我家又不是孤兒院!
    一個個竟在鬼扯淡!
    可沒想一轉眼,更詭異的事情發生了。
    李單的家,竟然成了傳說中的兜率宮,他則成為第三任宮主。
    從此以後,他成了城中村的隐士高人。
    時光如梭,歲月流轉。
    李單發現,這個世界,并不是那麽簡單。
    所有的一切,好像都提前寫好了劇本。
    仿佛冥冥中,一只無形大手,在操控着無數的提線木偶。
    唯有住進兜率宮之人,才能獲得真正的自由。小說關鍵詞:傳奇大老板無彈窗,傳奇大老板,傳奇大老板最新章節閱讀

    免費言情 已完結 179.7萬字
  14. 他與微光皆傾城

    他與微光皆傾城

    網曝:神秘的軍門驕子陸彥辰結婚了,據說是女方死纏爛打,用卑鄙手段懷上了孩子。
    時光用小號在評論區回複,“明明是他強了女方,準備用孩子套住人家……”
    當天晚上,回家後的陸彥辰,第一時間将她推倒。
    時光驚道:“你幹什麽?”
    陸彥辰:“強上,生孩子、套你!”
    時光:“………”
    雙處,男主高冷傲嬌,腹黑城府,一步一步把女主拐回家,過上沒羞沒躁沒下限的婚姻生活。

    免費言情 已完結 273.7萬字
  15. 軍爺,今天套路了沒

    軍爺,今天套路了沒

    被父母逼婚,她随便拉了一個相親對象閃婚了,然而卻沒想到弄錯人,領完證後才發現自己嫁了A市第一軍閥世家的大少爺,權傾京城、尊貴霸道的太子爺司徒昊!OMG!他到底看上了她哪點啊?現在要後悔還來得及嗎?“你覺得我們再進去換個證可能嗎?”她小心翼翼的問道。男人挑了挑眉,“你是想剛領完證就變成失婚少婦嗎?”“可是……”“一年時間!簡雲薇,我們給彼此一年時間,如果到時候還是不能接受,那麽我們就離婚!”男人認真的說道。然而,一年時間不到,她就發現了,原來他娶她,真的是別有用心……“上校大人,我們離婚吧!”她将一紙協議甩到他的桌面上。男人一怔,唇角勾起一抹邪魅,“軍婚不是你想離,想離就能離!”這個時候她才發現,自己上錯賊船,被坑了,面對這個徹夜索歡、毫無節制的男人,她期期艾艾,“上校大人,我錯了,今晚求休假!”

    免費言情 已完結 348.9萬字
  16. 暴君寵妃:夫君欠收拾

    暴君寵妃:夫君欠收拾

    套路玩的深,誰把誰當真?
    她是驕橫跋扈的公主,他是冷傲暴虐的國君,她誘拐敵國後被侵犯,殺他妻妾,滅他子嗣,卻寵冠後宮……

    免費言情 已完結 148.9萬字
  17. 天火大道

    天火大道

    天火大道是一條長達兩千零四十八米的街道,這裏有着一百六十八間店鋪,每一位店鋪的主人,都是一位強大的異能者。
    綽號宙斯的傭兵界之王,因為妻子在意外中身亡隐居于天火大道。他的店鋪,就叫做:宙斯珠寶店。在天火大道,他被稱之為:珠寶師。
    【突破自我,神王無敵,唐門所出,必為精品】

    免費言情 已完結 271.4萬字
  18. 霸寵妖妃:獸王帝尊,輕點愛

    霸寵妖妃:獸王帝尊,輕點愛

    誤闖美男禁地結果會怎樣?吃盡豆腐,占盡便宜,吃過抹嘴就跑呗!
    她心狠手辣,殺伐果斷,愛錢如命。他霸道變态,腹黑無情,卻愛她如命。她怼上他,颠翻這片大陸。
    她說,什麽都能商量,唯獨金錢不能。他說,擋她財路者,皆殺無赦!
    “吃幹抹盡還想跑?我們一起啪啪可好?”美男追上來了。
    她怒道:“不好,待我鳳禦九天,必然攪他個天翻地複。”
    他笑:“那先來攪本尊吧!”她吼:“乖乖的老實躺好!”

    免費言情 已完結 197.1萬字
  19. 惡魔校草纏上身:吻安,公主殿下

    惡魔校草纏上身:吻安,公主殿下

    【新文已發,惡魔甜甜寵:公主殿下,你好甜】初次見面,夏晨曦就損壞了惡魔校草池星夜最鐘愛的一條項鏈,從此被他纏上,輪為大惡魔的貼身專屬小女仆,完成惡魔随時随地提出來的各種需求。
    “夏晨曦,過來給本少爺倒茶。”“夏晨曦,過來給本少爺捶捶腿。”“夏晨曦,過來給本少爺揉揉肩。”摔,夏晨曦被欺負的忍無可忍,“惡魔,你有完沒完?”“沒完,夏晨曦,還有最後三件事需要你完成。”“哪三件?”惡魔邪氣一笑,步步逼近,“第一件,夏晨曦成為池星夜的新娘,第二件,夏晨曦一輩子都不離開池星夜,第三件,給我生個小小曦,嗯?”“不要,你走開,嗚嗚……”夏晨曦淚目,自從遇上池星夜這個惡魔,她的人生就發生了翻天覆地的變化。

    免費言情 已完結 111.5萬字
  20. 首席大人,克制點

    首席大人,克制點

    一場交易,她被未婚夫和表姐設計嫁給沒見過面的老頭子。
    三年後,她才見到老頭本尊,不想卻是……
    “滾滾滾……”事後,許念氣得上房揭瓦,暴跳如雷。
    “還想滾?那我們繼續……”

    免費言情 已完結 256.2萬字